中国混凝土网 - 混凝土行业门户网站 !

商业资讯: 行业动态 | 国际市场 | 企业情况 | 设备市场 | 行业股市 | 展会信息 | 展会新闻 | 混凝土知识 | 混凝土百科 | 名人名企

你现在的位置: 首页 > 商业资讯 > 混凝土百科 > 高性能混凝土发展现状及展望

高性能混凝土发展现状及展望

信息来源:hunningtu.biz  时间:2010-04-16  浏览次数:120

  水泥混凝土是近现代最广泛使用的建筑材料,也是当前最大宗的人造材料。进入20世纪以来,以混凝土为建筑材料的工程结构物得到飞速发展,与其他建筑材料相比,混凝土以其良好的综合性能已成为楼宇、桥梁、大坝、公路和城市运输系统等现代化标志的首选材料。
  据不完全统计,当今世界每年消耗的混凝土量不少于45亿立方米,而且在21世纪将继续稳定增长。
  水泥混凝土从问世以来,经历了低强度、中等强度、高强度乃至超高强度的发展历程,似乎人们总是乐于追求强度的不断提高。但是近四五十年以来,混凝土结构物因材质劣化造成过早失效以至破坏崩塌的事故在国内外都屡见不鲜,并有愈演愈烈之势。这些混凝土工程的过早破坏,其原因不是由于强度不足,而是由于混凝土耐久性不良。例如,在日本海沿岸,许多港湾建筑、桥梁等,建成后不到10年的时间,混凝土表面即出现开裂、剥落,钢筋锈蚀外露。美国国家材料顾问委员会1987年提交的报告报道,约有253万座混凝土桥面板出现不同程度的破坏(其中部分仅使用不到20年),而且每年还将增加35万座;同年Litvan和Bickley发表了对加拿大停车场的检测报告,他们发现大量停车场在远比预计的服务寿命要早得多就出现破坏。美国1991年在提交国会的报告《国家公路和桥梁现状》中指出,美国当时的全部混凝土工程价值约6万亿美元,而每年用于维修的费用高达300亿美元;南非1981年用于拆换桥梁、挡土墙、墩柱、路面、路缘、蓄水坝、系桩柱、防波堤、电杆基础等的经费就超过2700万英镑,这些结构物多是在建成后3~10年内就发现开裂破坏。英格兰岛中部环形线的21km快车道,11座混凝土高架桥的建造费是2800万英镑(1972年),因冬季撒盐化冰雪,两年后就发现钢筋锈蚀将混凝土顺筋胀裂,到1989年的15年间,修补费高达4500万英镑(即为造价的16倍),估计以后15年(到2004年)还要耗费12亿英镑(累计接近造价的6倍)!日本目前每年仅用于房屋结构维修的费用即达400亿日元以上,日本引以自豪的“新干线”使用不到10年就出现大面积混凝土开裂、剥蚀现象。
  我国基本建设比发达国家迟三十多年,但已建的一些工程也有类似令人堪忧的状况,有不少混凝土工程使用寿命远低于设计要求。据统计,我国现有建筑面积50亿平方米,其中约23亿平方米需分期分批进行鉴定加固,近10亿平方米急需维修加固。1989年,建设部科技发展司组织调查组对北京、西宁、贵阳等地的一些建筑物进行了调查,结果表明,建国初期的建筑均已达到必须大修的状态,现有大多数工业建筑不能满足安全使用50年的要求,一般使用25~30年就需大修和加固。我国在50年代兴建的大坝有许多已经成为陷入危境的“病坝”:截至1997年年底,驰名中外的安徽佛子岭、梅山、响洪甸三座老坝共亏损1亿多元,仅佛子岭1997年一年就亏损1700万元,而在修补佛子岭的设计预算中,只修两个拱就需要1400万元。1985年水电部调查报告表明:我国水工混凝土的冻融破坏在“三北”地区的工程中占100%,这些大型混凝土工程一般运行也就30年左右,有的甚至不到20年,如云峰宽缝重力坝,运行19年后下游面受破损显著,表面剥蚀露出骨料,总面积约8500平方米;而丰满重力坝自从运行后就年年维修,运行33年后,上、下游面及尾水闸墩破损明显,表面露出钢筋,冻害严重,致使坝顶抬高10余厘米。港口码头工程,特别是接触海水工程,其受冻破坏的现象更为严重,破坏的结构主要是防波堤、胸墙、码头、栈桥等,如天津新港的防波堤,采用普通混凝土的部分,经十几年左右的运行,就被冻融破坏以致不能发挥作用了。地处寒冷地区的水电站、工业厂房、铁道桥涵、交通部门的混凝土路面、桥梁及市政工程等的混凝土,接触雨水、蒸汽的部分,排水系统及受渗透水作用的部分,都受到了冻融破坏,如通辽发电厂的冷却塔,筒壁混凝土由于渗水致使混凝土遭受冻融破坏而发生表皮剥落、空鼓等现象。
  为使上述及类似工程继续发挥作用,各部门每年都要耗巨资加以维修,根据以往经验,混凝土工程安全使用期和维护使用期的比例为1:3~10,但维护使用期的维修费用却高达建设费用的1~3倍。我国南方海港浪溅区钢筋混凝土建筑物由于以往设计标准偏低和施工质量问题,通常使用8~10年即出现因氯盐腐蚀钢筋引起的开裂剥落破坏,维修费用及由此造成的直接、间接经济损失惊人,例如某10万吨级矿石中转码头,使用不到十年即要大修,大修防护费用预计高达上千万元。有专家预计,21世纪初我国将出现混凝土结构物的维修高潮,每年所需的维修费用可能高达数千亿元。我国北方如北京、天津等地的钢筋混凝土立交桥,即使没有像美国北方冷天要常撒盐化冰雪,使用时间也并不长,却已广泛显示钢筋锈蚀和混凝土顺筋胀裂的破坏迹象,并日益加剧发展。1998年,曾调查我国北方某国际机场使用仅数年的混凝土停机坪,发现混凝土道面多数出现坑蚀剥落破坏,严重影响飞机正常安全起降。后分析得知是由于道面混凝土遭受冻融及除冰盐侵蚀双重破坏作用所致。
  可见,由于混凝土的耐久性劣化或失效,世界各国为此付出的代价十分沉重。然而,值得庆幸的是,由于工程安全因素更由于耗费巨资的经济因素提醒了我们,现在,混凝土耐久性问题已越来越受到人们的重视。美国学者用“五倍定律”形象地说明了耐久性的重要性,尤其是设计对耐久性问题的重要性,例如设计时,对新建项目在钢筋防护方面无谓地每节省1美元,就意味着当发现钢筋锈蚀时采取措施要多追加维修费5美元,顺筋开裂时需多追加维修费25美元,严重破坏时需多追加维修费125美元。沉重的代价使人们认识到,不仅要用耐久性良好的材料及时修复已出现耐久性劣化的混凝土工程,更重要的是必须使今后新建的混凝土工程具有足够的耐久性以保证设计使用寿命,例如一些国家要求建设更为耐久的结构物,设计使用寿命为100年或更长。为此,世界各国都开始专门研究混凝土的耐久性及其改善技术。日本建设省从1980年就组织进行“建筑物耐久性提高技术”的开发研究,并于1985年提交了研究成果概要报告,1986年开始陆续出版发行了《建筑物耐久性系列规程》。有关混凝土耐久性的国际会议也已召开多次,反映了各国研究的最新成果。由欧洲RILEM等公司发起的建筑材料与构件的耐久性国际会议,自1976年以来,每三年举行一次;1989年美国和葡萄牙都举办了有关结构耐久性的国际会议;1991年美国和加拿大联合举行了第二届混凝土结构耐久性国际学术会议。混凝土的耐久性问题在我国也日益受到重视。全国钢筋混凝土标准技术委员会混凝土结构耐久性学术组于1991年成立;中国土木工程学会混凝土与预应力混凝土学会混凝土耐久性专业委员会也于1992年11月在济南成立。我国的混凝土耐久性研究已进入有组织的工作阶段。我国正处于基本建设的高潮期,特别是当前国家西部大开发的战略部署,大规模的基础设施工程正在或即将建设,每年混凝土用量高达十多亿立方米,其中许多设施属重点工程,如三峡水利枢纽工程、跨海跨江的特大型桥梁、高等级公路、大中型飞机场等,都是国家投以巨资的项目,均要求高寿命。发达国家走过的路已经表明,如果不重视工程混凝土的耐久性,将付出极大的经济代价,甚至影响经济建设的推进步伐。所以我国十分重视工程质量和耐久性,朱基总理就曾对三峡工程作出指示——“千年大计,国运所系”;国家计委、国家科技部在“九五”期间安排了由8家实力雄厚的科研院所承担的重点科技攻关项目“重点工程混凝土安全性的研究”,针对混凝土安全性存在的抗碱—骨料反应性、耐腐蚀性、抗冻性、耐钢筋锈蚀性等问题,从材料角度研究混凝土的耐久性。
  由此看来,混凝土耐久性已成为国际工程界普遍关注的重大课题。随着科学技术的发展和人类文明的进步,人类生产活动涉及的范围越来越广,各种在严酷环境下使用的混凝土工程,如跨海大桥、海洋工程、核反应堆、电站大坝等不断增多,这些工程关系国计民生,必须实现百年大计甚至千年大计,这就更加要求混凝土具有优异的耐久性即足够长的使用寿命。
  为此,人们对混凝土耐久性的追求已越来越主动和自觉,甚至超过了过去对混凝土强度的追求,于是以高耐久性为核心内容的高性能混凝土(HighPerformanceConcrete,简称HPC)便应运而生了。
  一、高性能混凝土的定义
  高性能混凝土这种新型混凝土是在20世纪90年代初才提出的。高性能混凝土这一名词的出现至今也就10多年,不同国家、不同学者按照各自的认识、实践、应用范围和目的要求,对高性能混凝土给出了不同的定义和解释。
  1.美国国家标准与技术研究所(NIST)与美国混凝土协会(ACI)于1990年5月在马里兰州Gaithersburg城召开的讨论会上指出:高性能混凝土是具有某些性能要求的匀质混凝土,必须采用严格的施工工艺,采用优质材料配制的,便于浇捣,不离析,力学性能稳定,早期强度高,具有韧性和体积稳定性等性能的耐久的混凝土,特别适用于高层建筑、桥梁以及暴露在严酷环境中的建筑结构。
  2.美国的PKMehta认为:高性能混凝土不仅要求高强度,还应具有高耐久性,且耐久性应当放在高性能混凝土的首位,同时具有高体积稳定性(高弹性模量、低干缩率、低徐变和低的温度应变)、高抗渗性及高工作性。
  3.法国的Malier认为:高性能混凝土的特点在于有良好的工作性、高的强度和早期强度、工程经济性高和高耐久性,特别适用于桥梁、港工、核反应堆以及高速公路等重要的混凝土建筑结构中。
  4.日本的小泽一雅和冈村甫认为:高性能混凝土应具有高工作性(高的流动性、粘聚性与可浇筑性)、低温升、低干缩率、高抗渗性和足够的强度。他们强调高性能混凝土首先应具备高工作性,甚至要达到免振捣,即自流平的状态。
  5.日本的Sarkar提出:高性能混凝土具有较高的力学性能(如抗压、抗折、抗拉强度)、高耐久性(如抗冻融循环、抗碳化和抗化学侵蚀性)、高抗渗性,属于水胶比很低的混凝土家族。
  6.加拿大Pierr-Claude和AdamNeville于1993年提出:高性能混凝土除比普通混凝土抗压强度高以外,还具有高弹性模量、高密实性能、低渗透性以及能抵御多种形式侵蚀的性能;特别适用于高层建筑、桥梁及暴露在恶劣环境中的结构。
  7.以美国弗吉尼亚州交通研究院的COzyildirim为代表强调:用于交通设施的高性能混凝土最重要的性能是低渗透性与高早期强度,在一些特殊设施中还要求较高的极限强度(40~60MPa)。
  8.我国的吴中伟院士给出高性能混凝土的如下定义:高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上,采用现代混凝土技术,选用优质材料,在严格质量管理条件下制成的;除了水泥、水、骨料外,必须掺加足够数量的掺合料和高效外加剂,且水胶比较低;针对不同用途要求,高性能混凝土对下列性能有重点地予以保证:耐久性、工作性、适用性、强度、体积稳定性及经济性,但应以耐久性作为设计的主要指标。
  9.黄大能教授认为:高性能混凝土应具有适当的高强性能,但必须有良好的耐久性,能抵抗各种化学侵蚀作用,体积稳定性好。
  综合以上观点,我们可以看出,大家公认高性能混凝土应具有高耐久性。本文章也持类似的观点,即高性能混凝土最核心内容是优异的耐久性,也就是说高性能混凝土首先应具备高耐久性,同时兼有良好的工作性和适宜的强度。此处“适宜的强度”并非指高强度,而是指满足工程设计及使用要求的具有足够可靠度的强度,即高性能混凝土未必要求很高的强度指标。因为大量使用的钢筋混凝土建筑物,如低层和多层房屋及高层房屋的上层部分,又如海工、水工混凝土,尤其是一些大体积混凝土,对强度要求并不高(例如C30左右即足矣),但对耐久性要求都很高,如日本明石海峡大桥2号和3号大体积柱基,91d设计强度只有17MPa(配制强度为24MPa,实测91d强度为42MPa),但为了保证这一20世纪全世界最长悬索桥的安全性和使用寿命,混凝土是按耐久性设计的,属于高性能混凝土。过去忽视耐久性的惨痛教训和未来混凝土工程可持续发展战略的提出,都告诫我们不论任何强度等级的混凝土,要求其具有足够的耐久性应该总是合理的。过去人们设计混凝土只单一以强度作为设计指标,导致很长时期以来人们一直将注意力放在了混凝土强度的不断提高上而忽视了耐久性,这一趋势在高性能混凝土提出之后发生了转变。
  总之,高性能混凝土因其优异的综合性能必将逐步取代过去的普通混凝土,可以预想,21世纪将成为高性能混凝土的时代。
  二、高性能混凝土发展概况
  高性能混凝土自提出以后的10多年以来,世界各国都对其进行了大量的研究开发与推广应用工作。其实早在高性能混凝土这个名词诞生以前,世界各国都已在客观上成功地应用了高性能混凝土,例如:
  美国西雅图双联广场                C135混凝土(1988年)
  美国芝加哥水塔大厦               C75混凝土(1975年)
  美国纽约Trump塔楼                C65混凝土(1981年)
  加拿大多伦多NovaScotia广场中心大厦       C80混凝土(1987年)
  日本明石海峡大桥                C40混凝土(1988年)
  进入20世纪90年代以后,高性能混凝土的研究开发与推广应用快速发展,世界各国均对此予以高度重视。
  1986年~1993年,法国由政府组织包括政府研究机构、高等院校、建筑公司等23个单位开展了“混凝土新方法”的研究项目,进行高性能混凝土的研究,并建成了示范工程。如Joigny城一座三跨后张法预应力钢筋混凝土桥,其混凝土强度等级相当于我国C70;又如Civaux核电站2号反应堆预应力混凝土安全壳,高85m,直径44m,混凝土强度等级为C70,其水泥用量只有240kg/m3,却有很高的气密性;再如英吉利海峡隧道衬里,由于设计寿命为120年,配制了水灰比为0.35~0.32,水泥用量为400kg/m3的混凝土,抗压强度为63MPa,渗透系数极低(K=1.4×10-13m/s)。1996年,法国公共工程部、教育与研究部又组织了为期4年的国家研究项目“高性能混凝土2000”,投入研究经费550万美元,对高性能混凝土材料设计、耐久性及工程性能进行广泛的研究。
  日本建设省于1988~1993年进行了一项综合开发计划“钢筋混凝土结构建筑物的超轻质、超高层化技术的开发(简称“新RC计划”)”,该计划研究内容涉及到了有关高性能混凝土的高工作性、高强度等方面,获得大量的科研成果,并在工程中获得了试验验证与工程应用。
  挪威皇家科技研究院的科学与工程研究基金(SINEF)持续资助高强混凝土和高性能混凝土的研究。
  瑞典1991年~1997年由政府和企业联合出资5200万克朗,实施高性能混凝土研究的国家计划。
  加拿大于1990年启动“优质混凝土科研网”,这是由该国政府提供科研基金(2.4亿加元)的一项国家重大科研项目,集中了7所大学和两家公司的科研力量,经过8年努力,在高性能混凝土及活性粉末混凝土领域取得了举世瞩目的成果,并制定了有关高性能混凝土的规范。
  美国在高性能混凝土研究应用方面成果丰富。1994年,美国联邦政府16个机构联合提出了一个在基础设施工程建设中应用高性能混凝土的建议,并决定在10年内投资2亿美元进行研究和开发。美国国家自然科学基金(NSF)、美国国家标准与技术研究所(NIST)、美国联邦公路管理局(FHWA)以及一些州政府的运输部和美国工程兵研究机构,都一直投入大量经费来资助高强混凝土和高性能混凝土的研究开发,例如NSF以每年200万美元的经费定期资助以西北大学为首的水泥基复合材料联合研究中心对高性能混凝土进行研究。1999年,美国NIST的建筑与防水研究试验室(BFRL)在国际互联网上公布了一个“高性能混凝土技术的伙伴关系(PartnershipforHighPerformanceConcreteTechnology)”,由工业界四个大企业和国家预拌混凝土协会、波特兰水泥协会合作,承担“商品高性能混凝土结构项目中计算机集成知识系统(CIKS)的开发”的国家重点研究计划。
  英国、西班牙、德国、澳大利亚、波兰等国也纷纷组织专门机构对高性能混凝土进行研究。
  近年来,我国高强混凝土与高性能混凝土的研究、应用在有限的经费支持下发展也较快。清华大学于1992年开始进行有关高性能混凝土的研究,并得到各部门的重视与支持,1994年~1997年由国家自然科学基金委员会、国家建设部、国家铁道部及国家建材局联合资助一项国家自然科学基金重点项目“高强与高性能混凝土材料的结构与力学性态研究”,项目由清华大学主持,有铁道科学研究院、中国建材科学研究院、原重庆建筑大学、东南大学共同承担,成果卓著。在“九五”期间,国家计委、国家科技部安排了重点科技攻关项目“重点工程混凝土安全性的研究”,一大批专家对该项目进行了跨行业、跨部门的联合攻关,重点对混凝土耐久性及高性能混凝土进行了系统研究,取得了大量成果。近年来,我国许多重大工程中都不同程度应用了高性能混凝土。2000~2003年期间,由中国工程院土木建筑学部国家建设部科技司组织,清华大学陈肇元教授主持下,国内有关专家讨论制定了“混凝土结构耐久性设计与施工指南”拟将对高性能混凝土应用与发展起到不小的推动作用。1995年~1997年,中国最高、世界第三高的上海金茂大厦(总高420.5m),采用了C40、C50、C60高性能混凝土,采用泵送施工,并创下一次泵送到3825m高度的世界纪录。此外,上海东方明珠电视塔、深圳地王大厦、首都机场航站楼、台湾东帝士大厦等工程中均成功应用了高性能混凝土。
  世界各国之所以能够成功地在诸多重点工程中应用高性能混凝土,是基于对高性能混凝土的基础研究才实现的。
  1.对高性能混凝土原材料的选择及研制。
  对于水泥,目前尚采用以往的常规传统水泥制备高性能混凝土,但为了与外加剂相容性良好,多采用硅酸盐水泥或普通硅酸盐水泥,且C3A含量应降低。随着对高性能混凝土性能要求的不断提高,世界各国正致力于研制生产新型高性能水泥(或称高性能胶凝材料)。如日本小野田水泥公司与清水建设共同研究开发的球状水泥,比普通水泥具有优越的物理力学性能。
  所谓球状水泥,是将水泥粒子加工成球形,而不是传统水泥的碎石型,这种水泥可以使混凝土达到高流动性、高强度及高耐久性,确为高性能水泥;此外还出现了调粒水泥、活化水泥等。Rossetti等经试验研究在意大利一家水泥厂投产了一种特种超塑化水泥SPC(SpecialSuperplasticizedCement)。该水泥是在意大利525型硅酸盐水泥生产时掺入超塑化剂制成的,该水泥可明显提高混凝土流动性。瑞典用中热水泥和硅灰及超塑化剂生产出一种强力改性水泥EMC(EnergeticallyModifiedCement),它可用极低的水灰比配制成高强度或高性能混凝土。80年代~90年代初,前苏联研制成功低需水性水泥胶凝材料(BHB)系列产品,后来俄罗斯水泥科学研究院又研制成新产品ЦНВ系列产品,这种水泥与普通水泥相比,需水量要小得多,活性也有较大提高,适用于配制低水灰比混凝土,可使混凝土具有良好的工作性和耐久性,且水化热低,这些均符合高性能混凝土的需要。
  高性能混凝土离不开外加剂和矿物掺合料,为此,世界各国也大力研究开发了高性能外加剂及优质矿物掺合料。如萘系、多羧酸系、三聚氰胺系及氨基磺酸系等系列高效减水剂,日本研制生产的AE型引气剂等。这些外加剂的出现使高性能混凝土高工作性、高耐久性的实现成为可能。矿物掺合料也是高性能混凝土不可缺少的组分,目前已出现了专门用以制备高性能混凝土的高效优质复合型矿物掺合料。
  此外,各国对制备高性能混凝土所需的粗、细骨料要求也逐步规范化、标准化,同时也出现了用轻骨料配制的高性能轻混凝土。
  2.高性能混凝土配合比设计的研究。
  高性能混凝土设计目标首先是高耐久性,并兼顾工作性与强度。为此,世界各国学者均提出了各自的有关高性能混凝土配合比设计方法。如P.K.Mehta和Aitcin推荐的高强度高性能混凝土配合比确定方法;法国路桥实验中心建议的有关高性能混凝土设计方法;日本阿部道彦采用的高性能混凝土配合比计算方法及Domone、Carbonari等基于最大密实度理论而提出的高性能混凝土配合比设计方法。高性能混凝土对原材料质量及配合比参数变化都较敏感,故配合比计算的精确度要求较高,为此,世界各国学者研究了高性能混凝土配合比设计的计算机化,例如清华大学博士研究生王德怀进行的“高性能混凝土配合比设计与质量控制的计算机化”课题研究;法国路桥实验中心提出的优化高性能混凝土配合比设计的RENE—LCPCTM软件等。
  3.有关高性能混凝土性能及评价方法的研究。
  高性能混凝土具有优于普通混凝土的高工作性、高耐久性及良好的力学性能。这些高性能若仍采用传统的普通混凝土性能评价方法,显然是不合适的。各国学者针对这一问题进行了广泛的研究。对高性能混凝土的高流动性评价,各国学者在流变学研究的基础上,提出了多种评价方法,如L-流动试验、V形漏斗试验、环贯入试验、圆筒贯入试验、充填性试验等方法。
  因为高性能混凝土的核心内容也即最显著标志是高耐久性,对高性能混凝土耐久性及其评价方法的研究是各国学者重点关注的方面。较多的研究集中于高性能混凝土渗透性评价,如采用美国ASTM1202和AASHTOT277的通电测量法及其改进方法的研究;而对高性能混凝土其他耐久性如抗冻性的研究则相对较少。而且,目前也尚无统一的高性能混凝土耐久性评价方法及评价指标,这在一定程度上与高性能混凝土发展趋势不相适应。
  此外,各国学者对高性能混凝土材料显微结构也进行了研究,提出了一些不同于普通混凝土的独特机理。
  在各国学者共同努力下,高性能混凝土的研究和应用正向逐步成熟进而向更高目标迈进。目前已出现了超高性能混凝土(UltraHigh Performan ceoncrete,简称UHPC),较成功的有活性细粒混凝土(ReactivePowderConcrete,缩写成RPC)等,使高性能混凝土向着更加耐久、高断裂能的方向发展。我国学者吴中伟院士提出高性能混凝土应充分发挥其环保、节能、可持续发展的优势,使高性能混凝土最终向“绿色高性能混凝土(GreenHighPerformanceConcrete,简称为GHPC)”方向发展。
  三、高性能混凝土耐久性研究现状
  1.普通混凝土耐久性试验方法的局限性
  普通混凝土耐久性已经有了沿用已久的试验方法,例如用抗水渗透性试验来评价混凝土抵抗外部介质侵入的能力,用抗冻融性试验(也简称抗冻性)和抗干湿循环性试验来评价混凝土抵抗物理作用劣化的能力,用抗碳化性试验来评价混凝土抵抗钢筋锈蚀的能力。但是,普通混凝土的这些耐久性试验方法均是单因素试验,即每种试验方法均是在单一破坏作用为主的情况下进行耐久性评价,这与混凝土工程实际所处环境条件差异太大,混凝土工程实际使用过程中总是处于多种破坏因素共同作用的状态(如冻融、干湿、离子渗透等作用共同存在);而且,普通混凝土耐久性试验方法往往不能有效地测试出高性能混凝土的耐久性,例如,有很高水密性的高性能混凝土,用GBJ82-85《普通混凝土长期性能及耐久性试验方法》中的方法检测时,即使在很高水压下(有时甚至超出了混凝土渗透仪的有效量测范围)渗水高度也很小甚至测不出,但某些有害离子却能在该混凝土中扩散;其次,普通混凝土耐久性试验中对混凝土耐久性的评价指标用于高性能混凝土耐久性评价往往不敏感,例如高性能混凝土在水中冻融300次后其抗压强度损失率仍很小(本论文的研究中该损失率值最低的只有约4%),重量损失率常常为负值(即重量未损失反而增加),而普通混凝土在水中冻融50次后其抗压强度损失和重量损失即明显表现出来。
  由此看来,必须设计更加合理有效的试验方法及评价指标来评价高性能混凝土的耐久性。
  2.高性能混凝土耐久性研究方法综述
  显然,传统的普通混凝土耐久性试验方法不适用于高性能混凝土耐久性评价,但到目前为止,关于高性能混凝土耐久性研究和评价方法的报道很少,对其抗冻性、抗渗性等耐久性的检验和评价,基本上仍沿用对普通混凝土耐久性的试验和检测方法,这对高性能混凝土的研究及应用十分不利。国内外一些学者从不同角度对高性能混凝土渗透性及抗冻性作了一定研究,在此仅列举部分范例。
  2.1混凝土渗透性试验方法混凝土的耐久性与其渗透性有着密切的关系,所以世界各国学者都对混凝土渗透性试验方法进行了专门研究,有些已经成为混凝土渗透性检验的标准方法。这些方法大致可归纳为如下几类:透水法、透气法、表面吸水法、Cl-渗透法、通电测量法等。其中透水法、透气法及表面吸水法只能用于低抗渗性混凝土,而对于抗渗性很高的高性能混凝土则无能为力;Cl-渗透法及通电测量法则可以用来测试高抗渗混凝土,国内外许多学者已用这些方法对高性能混凝土渗透性评价作了一些尝试性研究。
  M.R.Hansen等采用直流电量法(即AASHTOT277法)并同时测量混凝土交流阻抗的方法研究了高性能混凝土渗透性。
  章春梅等采用电导法测定了高性能混凝土的抗渗性。
  R.Gagne等采用透气性试验方法和ASTMC1202法,对掺与不掺硅灰的不同流动性的高强混凝土渗透性进行了研究。
  M.H.Zhang等采用高压透水方法和AASHTOT277法对高强轻质混凝土的渗透性进行了研究。
  文献介绍了一种可用于高抗渗性混凝土渗透性测试的试验方法。该方法采用有机溶剂作为渗透液(如卤代链烃族的二氯甲烷或链烃族的n-庚烷,其中采用二氯甲烷效果较好),试件养护至规定龄期后,将其浸泡于有机溶剂中,72h后测定试件单位面积渗透有机溶剂的体积数(l/m2),以此确定混凝土的渗透性。  赵铁军在其博士论文中研究了用于高性能混凝土渗透性评定的试验方法。该方法系对ASTMC1202方法进行一系列改进,克服了ASTMC1202方法中采用直流电测量的许多缺点。该方法采用电压为1V、频率为1KHz的交流电,被测混凝土试件两端都为3%的NaCl溶液,测量时间较短。将该方法与ASTMC1202方法比较,发现二者测试结果有很好的相关性。该方法最终是以经修正的混凝土电阻R反映混凝土的渗透性,并参照ASTMC1202对混凝土渗透性评定标准,用该方法将混凝土渗透性分为5级,见表1。
  表1 用交流电测量混凝土渗透性的评定标准
  参照ACI高性能混凝土委员会用ASTMC1202和AASHTOT277将高性能混凝土渗透性分级的评定标准,赵铁军用交流电测量法也提出了对高性能混凝土渗透性的评定标准,见表2。即认为若用交流电测量混凝土渗透性,当修正后的混凝土电阻大于450Ω时,就渗透性方面讲该混凝土可称为高性能混凝土,修正后混凝土的电阻值越大则高性能混凝土渗透性越低,相应抗渗性等级越高。
  表2 用交流电测量高性能混凝土渗透性的评定标准
  混凝土抗冻融性试验方法普通混凝土抗冻性试验分为慢冻法和快冻法两种,均是在水中进行。这两种方法是目前国际上同时存在的两种检测混凝土抗冻性的方法。美、日、加拿大等国采用快冻法,俄罗斯及东欧国家仍采用慢冻法,这两种方法均列入了这些国家的正式标准或规程。我国在五六十年代均采用慢冻法,六十年代中后期水工、港工部门相继开展了快冻法的试验研究,港工部门直接采用了快冻法,并列入了部颁混凝土试验规程(JTJ225-87);水工部门在1982年部颁的水工混凝土试验规程正式列入了快冻法。目前我国同时存在快冻法和慢冻法两种试验方法,并均以标准规程的形式存在。
  对于高强混凝土或高性能混凝土,其抗冻性能方面的研究报道尚不多见。已有的报道也多是采用水中快冻法进行抗冻性试验,如中国水利水电科学研究院曹建国等人对高强混凝土抗冻性进行的研究。
  有关高性能混凝土耐久性其他方面的研究除抗渗性、抗冻性研究之外,国内外学者对高性能混凝土的其他耐久性也作了一定研究。如中国建材研究院李建勇等对高性能混凝土徐变和干缩进行了研究;U.Schneider等对高性能混凝土抗化学侵蚀性进行了研究;奥地利P.Nischer等对高性能混凝土抗溶蚀性进行了研究;德国H.W.Dorner研究了高性能混凝土的耐酸性能;P.K.Mehta对高性能混凝土中碱-骨料反应及钢筋锈蚀进行了探讨。
  各国学者研究高性能混凝土耐久性的同时,对高性能混凝土耐久性有关机理进行了一定探讨,如P.K.Mehta研究了高性能混凝土中裂缝、微裂缝与其耐久性的关系;芬兰H.Kukko研究了高性能混凝土抗冻性与显微结构的关系。
  图1 混凝土受外界环境作用而劣化的整体模型
  综上所述可见,各国学者对高性能混凝土耐久性进行了不同程度的关注。然而至今为止,在大多数已发表的研究成果中,各种耐久性破坏因素都是单独考虑的。而事实上,混凝土尤其是高性能混凝土所处的使用环境是多种破坏因素共存的复杂环境,高性能混凝土不可能只受单一因素作用。几种因素共存所产生的综合作用,是各因素作用的简单叠加呢,还是产生超叠加效应(即“1+1>2”的效应)呢?1991年吴中伟院士提出了“混凝土耐久性综合症及其防治”的思想;PKMehta也明确指出,混凝土耐久性是一个整体性能,必须看成是所有劣化机制共同作用造成的结果,并提出了高性能混凝土受外界环境作用而劣化的整体模型(见图1)。这些都提醒人们应该重视多重因素对高性能混凝土耐久性破坏的研究。
  四、黑龙江省高性能混凝土发展与现状
  高性能混凝土的问世对本省建筑业的科技进步起到不小的推动作用,尤其是大流动度高性能商品砼的出现,大大提高了现代化施工水平,保证了施工质量和工程质量,为高层建筑的发展提供了有利的条件。尤其在冬季施工技术、防冻剂开发与生产、负温混凝土泵送施工、负温防渗混凝土研制与施工、超负温混凝土冬季施工、高层建筑物冬季施工技术、负温混凝土基础性学术研究水平都具有国内领先国际先进水平。
  商品混凝土也取得快速发展,目前全省商品混凝土设计产量达260~270万m3,实际生产量为100万m3左右。哈市占80万m3。商品混凝土种类比较齐全,有夏季用的缓凝商品混凝土;冬季施工用的负温混凝土、早强混凝土及抗渗商品混凝土等。混凝土强度等级一般常用的C20~C40,最高为C60混凝土在建筑工程中广泛应用。
  全省已建的商品混凝土搅拌站23家,予建的3~4家。齐市、大庆、牡市各2家,佳市、鹤市、黑河各1家。哈市14家的商品混凝土目前全省建设行业较为认同。但生产厂家过多,竞争激烈、价格偏低、商品混凝土的质量不易得到保证。
  省内砼管桩生产也得到快速发展,管子质量普遍得到保证、管理比较正规,管桩混凝土强度等级可达C80,用户比较满意。
  我省高性能混凝土进一步发展应加强经下几个方面的工作:
  1.调整省、市混凝土行业协会。目前行业正处于新老交替时期,处于政府不管,协会也没有人抓,应尽早整顿。制订新的协会规章制度,政府部门加强领导。建议省市混凝土协会与商品砼合并为一个协会。
  2.制定用于高性能混凝土的原材料地方标准与规程:
  ①砂、石原料要定点生产实现商品化,制订完善的质量标准及使用规程。
  ②制订矿物掺合料质量标准并选用优质的掺合料。
  ③整顿省内外加剂市场及生产厂家不具备生产条件的、低劣的外加剂从省市建筑市场清除。
  ④为了保证混凝土工程质量,水泥应控制C3A及碱的含量,是防止混凝土早期开裂的重要措施之一。
  ⑤研制和应用第三代的减水剂和防冻剂,开发新的引气剂也是提高高性能混凝土工程质量及耐久性的重要措施之一。
  3.提高人们对混凝土工程耐久性的认识。工程质量、施工质量及工程设计首先应以耐久性指标为依据,其次满足强度指标要求。耐久性工程是为国为民造福的工程节省社会资源的重大措施。
  4.加强高性能混凝土及耐久性混凝土的基础性科学研究,省市领导给予重视。  水泥混凝土是近现代最广泛使用的建筑材料,也是当前最大宗的人造材料。进入20世纪以来,以混凝土为建筑材料的工程结构物得到飞速发展,与其他建筑材料相比,混凝土以其良好的综合性能已成为楼宇、桥梁、大坝、公路和城市运输系统等现代化标志的首选材料。
  据不完全统计,当今世界每年消耗的混凝土量不少于45亿立方米,而且在21世纪将继续稳定增长。
  水泥混凝土从问世以来,经历了低强度、中等强度、高强度乃至超高强度的发展历程,似乎人们总是乐于追求强度的不断提高。但是近四五十年以来,混凝土结构物因材质劣化造成过早失效以至破坏崩塌的事故在国内外都屡见不鲜,并有愈演愈烈之势。这些混凝土工程的过早破坏,其原因不是由于强度不足,而是由于混凝土耐久性不良。例如,在日本海沿岸,许多港湾建筑、桥梁等,建成后不到10年的时间,混凝土表面即出现开裂、剥落,钢筋锈蚀外露。美国国家材料顾问委员会1987年提交的报告报道,约有253万座混凝土桥面板出现不同程度的破坏(其中部分仅使用不到20年),而且每年还将增加35万座;同年Litvan和Bickley发表了对加拿大停车场的检测报告,他们发现大量停车场在远比预计的服务寿命要早得多就出现破坏。美国1991年在提交国会的报告《国家公路和桥梁现状》中指出,美国当时的全部混凝土工程价值约6万亿美元,而每年用于维修的费用高达300亿美元;南非1981年用于拆换桥梁、挡土墙、墩柱、路面、路缘、蓄水坝、系桩柱、防波堤、电杆基础等的经费就超过2700万英镑,这些结构物多是在建成后3~10年内就发现开裂破坏。英格兰岛中部环形线的21km快车道,11座混凝土高架桥的建造费是2800万英镑(1972年),因冬季撒盐化冰雪,两年后就发现钢筋锈蚀将混凝土顺筋胀裂,到1989年的15年间,修补费高达4500万英镑(即为造价的16倍),估计以后15年(到2004年)还要耗费12亿英镑(累计接近造价的6倍)!日本目前每年仅用于房屋结构维修的费用即达400亿日元以上,日本引以自豪的“新干线”使用不到10年就出现大面积混凝土开裂、剥蚀现象。
  我国基本建设比发达国家迟三十多年,但已建的一些工程也有类似令人堪忧的状况,有不少混凝土工程使用寿命远低于设计要求。据统计,我国现有建筑面积50亿平方米,其中约23亿平方米需分期分批进行鉴定加固,近10亿平方米急需维修加固。1989年,建设部科技发展司组织调查组对北京、西宁、贵阳等地的一些建筑物进行了调查,结果表明,建国初期的建筑均已达到必须大修的状态,现有大多数工业建筑不能满足安全使用50年的要求,一般使用25~30年就需大修和加固。我国在50年代兴建的大坝有许多已经成为陷入危境的“病坝”:截至1997年年底,驰名中外的安徽佛子岭、梅山、响洪甸三座老坝共亏损1亿多元,仅佛子岭1997年一年就亏损1700万元,而在修补佛子岭的设计预算中,只修两个拱就需要1400万元。1985年水电部调查报告表明:我国水工混凝土的冻融破坏在“三北”地区的工程中占100%,这些大型混凝土工程一般运行也就30年左右,有的甚至不到20年,如云峰宽缝重力坝,运行19年后下游面受破损显著,表面剥蚀露出骨料,总面积约8500平方米;而丰满重力坝自从运行后就年年维修,运行33年后,上、下游面及尾水闸墩破损明显,表面露出钢筋,冻害严重,致使坝顶抬高10余厘米。港口码头工程,特别是接触海水工程,其受冻破坏的现象更为严重,破坏的结构主要是防波堤、胸墙、码头、栈桥等,如天津新港的防波堤,采用普通混凝土的部分,经十几年左右的运行,就被冻融破坏以致不能发挥作用了。地处寒冷地区的水电站、工业厂房、铁道桥涵、交通部门的混凝土路面、桥梁及市政工程等的混凝土,接触雨水、蒸汽的部分,排水系统及受渗透水作用的部分,都受到了冻融破坏,如通辽发电厂的冷却塔,筒壁混凝土由于渗水致使混凝土遭受冻融破坏而发生表皮剥落、空鼓等现象。
  为使上述及类似工程继续发挥作用,各部门每年都要耗巨资加以维修,根据以往经验,混凝土工程安全使用期和维护使用期的比例为1:3~10,但维护使用期的维修费用却高达建设费用的1~3倍。我国南方海港浪溅区钢筋混凝土建筑物由于以往设计标准偏低和施工质量问题,通常使用8~10年即出现因氯盐腐蚀钢筋引起的开裂剥落破坏,维修费用及由此造成的直接、间接经济损失惊人,例如某10万吨级矿石中转码头,使用不到十年即要大修,大修防护费用预计高达上千万元。有专家预计,21世纪初我国将出现混凝土结构物的维修高潮,每年所需的维修费用可能高达数千亿元。我国北方如北京、天津等地的钢筋混凝土立交桥,即使没有像美国北方冷天要常撒盐化冰雪,使用时间也并不长,却已广泛显示钢筋锈蚀和混凝土顺筋胀裂的破坏迹象,并日益加剧发展。1998年,曾调查我国北方某国际机场使用仅数年的混凝土停机坪,发现混凝土道面多数出现坑蚀剥落破坏,严重影响飞机正常安全起降。后分析得知是由于道面混凝土遭受冻融及除冰盐侵蚀双重破坏作用所致。
  可见,由于混凝土的耐久性劣化或失效,世界各国为此付出的代价十分沉重。然而,值得庆幸的是,由于工程安全因素更由于耗费巨资的经济因素提醒了我们,现在,混凝土耐久性问题已越来越受到人们的重视。美国学者用“五倍定律”形象地说明了耐久性的重要性,尤其是设计对耐久性问题的重要性,例如设计时,对新建项目在钢筋防护方面无谓地每节省1美元,就意味着当发现钢筋锈蚀时采取措施要多追加维修费5美元,顺筋开裂时需多追加维修费25美元,严重破坏时需多追加维修费125美元。沉重的代价使人们认识到,不仅要用耐久性良好的材料及时修复已出现耐久性劣化的混凝土工程,更重要的是必须使今后新建的混凝土工程具有足够的耐久性以保证设计使用寿命,例如一些国家要求建设更为耐久的结构物,设计使用寿命为100年或更长。为此,世界各国都开始专门研究混凝土的耐久性及其改善技术。日本建设省从1980年就组织进行“建筑物耐久性提高技术”的开发研究,并于1985年提交了研究成果概要报告,1986年开始陆续出版发行了《建筑物耐久性系列规程》。有关混凝土耐久性的国际会议也已召开多次,反映了各国研究的最新成果。由欧洲RILEM等公司发起的建筑材料与构件的耐久性国际会议,自1976年以来,每三年举行一次;1989年美国和葡萄牙都举办了有关结构耐久性的国际会议;1991年美国和加拿大联合举行了第二届混凝土结构耐久性国际学术会议。混凝土的耐久性问题在我国也日益受到重视。全国钢筋混凝土标准技术委员会混凝土结构耐久性学术组于1991年成立;中国土木工程学会混凝土与预应力混凝土学会混凝土耐久性专业委员会也于1992年11月在济南成立。我国的混凝土耐久性研究已进入有组织的工作阶段。我国正处于基本建设的高潮期,特别是当前国家西部大开发的战略部署,大规模的基础设施工程正在或即将建设,每年混凝土用量高达十多亿立方米,其中许多设施属重点工程,如三峡水利枢纽工程、跨海跨江的特大型桥梁、高等级公路、大中型飞机场等,都是国家投以巨资的项目,均要求高寿命。发达国家走过的路已经表明,如果不重视工程混凝土的耐久性,将付出极大的经济代价,甚至影响经济建设的推进步伐。所以我国十分重视工程质量和耐久性,朱基总理就曾对三峡工程作出指示——“千年大计,国运所系”;国家计委、国家科技部在“九五”期间安排了由8家实力雄厚的科研院所承担的重点科技攻关项目“重点工程混凝土安全性的研究”,针对混凝土安全性存在的抗碱—骨料反应性、耐腐蚀性、抗冻性、耐钢筋锈蚀性等问题,从材料角度研究混凝土的耐久性。
  由此看来,混凝土耐久性已成为国际工程界普遍关注的重大课题。随着科学技术的发展和人类文明的进步,人类生产活动涉及的范围越来越广,各种在严酷环境下使用的混凝土工程,如跨海大桥、海洋工程、核反应堆、电站大坝等不断增多,这些工程关系国计民生,必须实现百年大计甚至千年大计,这就更加要求混凝土具有优异的耐久性即足够长的使用寿命。
  为此,人们对混凝土耐久性的追求已越来越主动和自觉,甚至超过了过去对混凝土强度的追求,于是以高耐久性为核心内容的高性能混凝土(HighPerformanceConcrete,简称HPC)便应运而生了。
  一、高性能混凝土的定义
  高性能混凝土这种新型混凝土是在20世纪90年代初才提出的。高性能混凝土这一名词的出现至今也就10多年,不同国家、不同学者按照各自的认识、实践、应用范围和目的要求,对高性能混凝土给出了不同的定义和解释。
  1.美国国家标准与技术研究所(NIST)与美国混凝土协会(ACI)于1990年5月在马里兰州Gaithersburg城召开的讨论会上指出:高性能混凝土是具有某些性能要求的匀质混凝土,必须采用严格的施工工艺,采用优质材料配制的,便于浇捣,不离析,力学性能稳定,早期强度高,具有韧性和体积稳定性等性能的耐久的混凝土,特别适用于高层建筑、桥梁以及暴露在严酷环境中的建筑结构。
  2.美国的PKMehta认为:高性能混凝土不仅要求高强度,还应具有高耐久性,且耐久性应当放在高性能混凝土的首位,同时具有高体积稳定性(高弹性模量、低干缩率、低徐变和低的温度应变)、高抗渗性及高工作性。
  3.法国的Malier认为:高性能混凝土的特点在于有良好的工作性、高的强度和早期强度、工程经济性高和高耐久性,特别适用于桥梁、港工、核反应堆以及高速公路等重要的混凝土建筑结构中。
  4.日本的小泽一雅和冈村甫认为:高性能混凝土应具有高工作性(高的流动性、粘聚性与可浇筑性)、低温升、低干缩率、高抗渗性和足够的强度。他们强调高性能混凝土首先应具备高工作性,甚至要达到免振捣,即自流平的状态。
  5.日本的Sarkar提出:高性能混凝土具有较高的力学性能(如抗压、抗折、抗拉强度)、高耐久性(如抗冻融循环、抗碳化和抗化学侵蚀性)、高抗渗性,属于水胶比很低的混凝土家族。
  6.加拿大Pierr-Claude和AdamNeville于1993年提出:高性能混凝土除比普通混凝土抗压强度高以外,还具有高弹性模量、高密实性能、低渗透性以及能抵御多种形式侵蚀的性能;特别适用于高层建筑、桥梁及暴露在恶劣环境中的结构。
  7.以美国弗吉尼亚州交通研究院的COzyildirim为代表强调:用于交通设施的高性能混凝土最重要的性能是低渗透性与高早期强度,在一些特殊设施中还要求较高的极限强度(40~60MPa)。
  8.我国的吴中伟院士给出高性能混凝土的如下定义:高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上,采用现代混凝土技术,选用优质材料,在严格质量管理条件下制成的;除了水泥、水、骨料外,必须掺加足够数量的掺合料和高效外加剂,且水胶比较低;针对不同用途要求,高性能混凝土对下列性能有重点地予以保证:耐久性、工作性、适用性、强度、体积稳定性及经济性,但应以耐久性作为设计的主要指标。
  9.黄大能教授认为:高性能混凝土应具有适当的高强性能,但必须有良好的耐久性,能抵抗各种化学侵蚀作用,体积稳定性好。
  综合以上观点,我们可以看出,大家公认高性能混凝土应具有高耐久性。本文章也持类似的观点,即高性能混凝土最核心内容是优异的耐久性,也就是说高性能混凝土首先应具备高耐久性,同时兼有良好的工作性和适宜的强度。此处“适宜的强度”并非指高强度,而是指满足工程设计及使用要求的具有足够可靠度的强度,即高性能混凝土未必要求很高的强度指标。因为大量使用的钢筋混凝土建筑物,如低层和多层房屋及高层房屋的上层部分,又如海工、水工混凝土,尤其是一些大体积混凝土,对强度要求并不高(例如C30左右即足矣),但对耐久性要求都很高,如日本明石海峡大桥2号和3号大体积柱基,91d设计强度只有17MPa(配制强度为24MPa,实测91d强度为42MPa),但为了保证这一20世纪全世界最长悬索桥的安全性和使用寿命,混凝土是按耐久性设计的,属于高性能混凝土。过去忽视耐久性的惨痛教训和未来混凝土工程可持续发展战略的提出,都告诫我们不论任何强度等级的混凝土,要求其具有足够的耐久性应该总是合理的。过去人们设计混凝土只单一以强度作为设计指标,导致很长时期以来人们一直将注意力放在了混凝土强度的不断提高上而忽视了耐久性,这一趋势在高性能混凝土提出之后发生了转变。
  总之,高性能混凝土因其优异的综合性能必将逐步取代过去的普通混凝土,可以预想,21世纪将成为高性能混凝土的时代。
  二、高性能混凝土发展概况
  高性能混凝土自提出以后的10多年以来,世界各国都对其进行了大量的研究开发与推广应用工作。其实早在高性能混凝土这个名词诞生以前,世界各国都已在客观上成功地应用了高性能混凝土,例如:
  美国西雅图双联广场                C135混凝土(1988年)
  美国芝加哥水塔大厦               C75混凝土(1975年)
  美国纽约Trump塔楼                C65混凝土(1981年)
  加拿大多伦多NovaScotia广场中心大厦       C80混凝土(1987年)
  日本明石海峡大桥                C40混凝土(1988年)
  进入20世纪90年代以后,高性能混凝土的研究开发与推广应用快速发展,世界各国均对此予以高度重视。
  1986年~1993年,法国由政府组织包括政府研究机构、高等院校、建筑公司等23个单位开展了“混凝土新方法”的研究项目,进行高性能混凝土的研究,并建成了示范工程。如Joigny城一座三跨后张法预应力钢筋混凝土桥,其混凝土强度等级相当于我国C70;又如Civaux核电站2号反应堆预应力混凝土安全壳,高85m,直径44m,混凝土强度等级为C70,其水泥用量只有240kg/m3,却有很高的气密性;再如英吉利海峡隧道衬里,由于设计寿命为120年,配制了水灰比为0.35~0.32,水泥用量为400kg/m3的混凝土,抗压强度为63MPa,渗透系数极低(K=1.4×10-13m/s)。1996年,法国公共工程部、教育与研究部又组织了为期4年的国家研究项目“高性能混凝土2000”,投入研究经费550万美元,对高性能混凝土材料设计、耐久性及工程性能进行广泛的研究。
  日本建设省于1988~1993年进行了一项综合开发计划“钢筋混凝土结构建筑物的超轻质、超高层化技术的开发(简称“新RC计划”)”,该计划研究内容涉及到了有关高性能混凝土的高工作性、高强度等方面,获得大量的科研成果,并在工程中获得了试验验证与工程应用。
  挪威皇家科技研究院的科学与工程研究基金(SINEF)持续资助高强混凝土和高性能混凝土的研究。
  瑞典1991年~1997年由政府和企业联合出资5200万克朗,实施高性能混凝土研究的国家计划。
  加拿大于1990年启动“优质混凝土科研网”,这是由该国政府提供科研基金(2.4亿加元)的一项国家重大科研项目,集中了7所大学和两家公司的科研力量,经过8年努力,在高性能混凝土及活性粉末混凝土领域取得了举世瞩目的成果,并制定了有关高性能混凝土的规范。
  美国在高性能混凝土研究应用方面成果丰富。1994年,美国联邦政府16个机构联合提出了一个在基础设施工程建设中应用高性能混凝土的建议,并决定在10年内投资2亿美元进行研究和开发。美国国家自然科学基金(NSF)、美国国家标准与技术研究所(NIST)、美国联邦公路管理局(FHWA)以及一些州政府的运输部和美国工程兵研究机构,都一直投入大量经费来资助高强混凝土和高性能混凝土的研究开发,例如NSF以每年200万美元的经费定期资助以西北大学为首的水泥基复合材料联合研究中心对高性能混凝土进行研究。1999年,美国NIST的建筑与防水研究试验室(BFRL)在国际互联网上公布了一个“高性能混凝土技术的伙伴关系(PartnershipforHighPerformanceConcreteTechnology)”,由工业界四个大企业和国家预拌混凝土协会、波特兰水泥协会合作,承担“商品高性能混凝土结构项目中计算机集成知识系统(CIKS)的开发”的国家重点研究计划。
  英国、西班牙、德国、澳大利亚、波兰等国也纷纷组织专门机构对高性能混凝土进行研究。
  近年来,我国高强混凝土与高性能混凝土的研究、应用在有限的经费支持下发展也较快。清华大学于1992年开始进行有关高性能混凝土的研究,并得到各部门的重视与支持,1994年~1997年由国家自然科学基金委员会、国家建设部、国家铁道部及国家建材局联合资助一项国家自然科学基金重点项目“高强与高性能混凝土材料的结构与力学性态研究”,项目由清华大学主持,有铁道科学研究院、中国建材科学研究院、原重庆建筑大学、东南大学共同承担,成果卓著。在“九五”期间,国家计委、国家科技部安排了重点科技攻关项目“重点工程混凝土安全性的研究”,一大批专家对该项目进行了跨行业、跨部门的联合攻关,重点对混凝土耐久性及高性能混凝土进行了系统研究,取得了大量成果。近年来,我国许多重大工程中都不同程度应用了高性能混凝土。2000~2003年期间,由中国工程院土木建筑学部国家建设部科技司组织,清华大学陈肇元教授主持下,国内有关专家讨论制定了“混凝土结构耐久性设计与施工指南”拟将对高性能混凝土应用与发展起到不小的推动作用。1995年~1997年,中国最高、世界第三高的上海金茂大厦(总高420.5m),采用了C40、C50、C60高性能混凝土,采用泵送施工,并创下一次泵送到3825m高度的世界纪录。此外,上海东方明珠电视塔、深圳地王大厦、首都机场航站楼、台湾东帝士大厦等工程中均成功应用了高性能混凝土。
  世界各国之所以能够成功地在诸多重点工程中应用高性能混凝土,是基于对高性能混凝土的基础研究才实现的。
  1.对高性能混凝土原材料的选择及研制。
  对于水泥,目前尚采用以往的常规传统水泥制备高性能混凝土,但为了与外加剂相容性良好,多采用硅酸盐水泥或普通硅酸盐水泥,且C3A含量应降低。随着对高性能混凝土性能要求的不断提高,世界各国正致力于研制生产新型高性能水泥(或称高性能胶凝材料)。如日本小野田水泥公司与清水建设共同研究开发的球状水泥,比普通水泥具有优越的物理力学性能。
  所谓球状水泥,是将水泥粒子加工成球形,而不是传统水泥的碎石型,这种水泥可以使混凝土达到高流动性、高强度及高耐久性,确为高性能水泥;此外还出现了调粒水泥、活化水泥等。Rossetti等经试验研究在意大利一家水泥厂投产了一种特种超塑化水泥SPC(SpecialSuperplasticizedCement)。该水泥是在意大利525型硅酸盐水泥生产时掺入超塑化剂制成的,该水泥可明显提高混凝土流动性。瑞典用中热水泥和硅灰及超塑化剂生产出一种强力改性水泥EMC(EnergeticallyModifiedCement),它可用极低的水灰比配制成高强度或高性能混凝土。80年代~90年代初,前苏联研制成功低需水性水泥胶凝材料(BHB)系列产品,后来俄罗斯水泥科学研究院又研制成新产品ЦНВ系列产品,这种水泥与普通水泥相比,需水量要小得多,活性也有较大提高,适用于配制低水灰比混凝土,可使混凝土具有良好的工作性和耐久性,且水化热低,这些均符合高性能混凝土的需要。
  高性能混凝土离不开外加剂和矿物掺合料,为此,世界各国也大力研究开发了高性能外加剂及优质矿物掺合料。如萘系、多羧酸系、三聚氰胺系及氨基磺酸系等系列高效减水剂,日本研制生产的AE型引气剂等。这些外加剂的出现使高性能混凝土高工作性、高耐久性的实现成为可能。矿物掺合料也是高性能混凝土不可缺少的组分,目前已出现了专门用以制备高性能混凝土的高效优质复合型矿物掺合料。
  此外,各国对制备高性能混凝土所需的粗、细骨料要求也逐步规范化、标准化,同时也出现了用轻骨料配制的高性能轻混凝土。
  2.高性能混凝土配合比设计的研究。
  高性能混凝土设计目标首先是高耐久性,并兼顾工作性与强度。为此,世界各国学者均提出了各自的有关高性能混凝土配合比设计方法。如P.K.Mehta和Aitcin推荐的高强度高性能混凝土配合比确定方法;法国路桥实验中心建议的有关高性能混凝土设计方法;日本阿部道彦采用的高性能混凝土配合比计算方法及Domone、Carbonari等基于最大密实度理论而提出的高性能混凝土配合比设计方法。高性能混凝土对原材料质量及配合比参数变化都较敏感,故配合比计算的精确度要求较高,为此,世界各国学者研究了高性能混凝土配合比设计的计算机化,例如清华大学博士研究生王德怀进行的“高性能混凝土配合比设计与质量控制的计算机化”课题研究;法国路桥实验中心提出的优化高性能混凝土配合比设计的RENE—LCPCTM软件等。
  3.有关高性能混凝土性能及评价方法的研究。
  高性能混凝土具有优于普通混凝土的高工作性、高耐久性及良好的力学性能。这些高性能若仍采用传统的普通混凝土性能评价方法,显然是不合适的。各国学者针对这一问题进行了广泛的研究。对高性能混凝土的高流动性评价,各国学者在流变学研究的基础上,提出了多种评价方法,如L-流动试验、V形漏斗试验、环贯入试验、圆筒贯入试验、充填性试验等方法。
  因为高性能混凝土的核心内容也即最显著标志是高耐久性,对高性能混凝土耐久性及其评价方法的研究是各国学者重点关注的方面。较多的研究集中于高性能混凝土渗透性评价,如采用美国ASTM1202和AASHTOT277的通电测量法及其改进方法的研究;而对高性能混凝土其他耐久性如抗冻性的研究则相对较少。而且,目前也尚无统一的高性能混凝土耐久性评价方法及评价指标,这在一定程度上与高性能混凝土发展趋势不相适应。
  此外,各国学者对高性能混凝土材料显微结构也进行了研究,提出了一些不同于普通混凝土的独特机理。
  在各国学者共同努力下,高性能混凝土的研究和应用正向逐步成熟进而向更高目标迈进。目前已出现了超高性能混凝土(UltraHigh Performan ceoncrete,简称UHPC),较成功的有活性细粒混凝土(ReactivePowderConcrete,缩写成RPC)等,使高性能混凝土向着更加耐久、高断裂能的方向发展。我国学者吴中伟院士提出高性能混凝土应充分发挥其环保、节能、可持续发展的优势,使高性能混凝土最终向“绿色高性能混凝土(GreenHighPerformanceConcrete,简称为GHPC)”方向发展。
  三、高性能混凝土耐久性研究现状
  1.普通混凝土耐久性试验方法的局限性
  普通混凝土耐久性已经有了沿用已久的试验方法,例如用抗水渗透性试验来评价混凝土抵抗外部介质侵入的能力,用抗冻融性试验(也简称抗冻性)和抗干湿循环性试验来评价混凝土抵抗物理作用劣化的能力,用抗碳化性试验来评价混凝土抵抗钢筋锈蚀的能力。但是,普通混凝土的这些耐久性试验方法均是单因素试验,即每种试验方法均是在单一破坏作用为主的情况下进行耐久性评价,这与混凝土工程实际所处环境条件差异太大,混凝土工程实际使用过程中总是处于多种破坏因素共同作用的状态(如冻融、干湿、离子渗透等作用共同存在);而且,普通混凝土耐久性试验方法往往不能有效地测试出高性能混凝土的耐久性,例如,有很高水密性的高性能混凝土,用GBJ82-85《普通混凝土长期性能及耐久性试验方法》中的方法检测时,即使在很高水压下(有时甚至超出了混凝土渗透仪的有效量测范围)渗水高度也很小甚至测不出,但某些有害离子却能在该混凝土中扩散;其次,普通混凝土耐久性试验中对混凝土耐久性的评价指标用于高性能混凝土耐久性评价往往不敏感,例如高性能混凝土在水中冻融300次后其抗压强度损失率仍很小(本论文的研究中该损失率值最低的只有约4%),重量损失率常常为负值(即重量未损失反而增加),而普通混凝土在水中冻融50次后其抗压强度损失和重量损失即明显表现出来。
  由此看来,必须设计更加合理有效的试验方法及评价指标来评价高性能混凝土的耐久性。
  2.高性能混凝土耐久性研究方法综述
  显然,传统的普通混凝土耐久性试验方法不适用于高性能混凝土耐久性评价,但到目前为止,关于高性能混凝土耐久性研究和评价方法的报道很少,对其抗冻性、抗渗性等耐久性的检验和评价,基本上仍沿用对普通混凝土耐久性的试验和检测方法,这对高性能混凝土的研究及应用十分不利。国内外一些学者从不同角度对高性能混凝土渗透性及抗冻性作了一定研究,在此仅列举部分范例。
  2.1混凝土渗透性试验方法混凝土的耐久性与其渗透性有着密切的关系,所以世界各国学者都对混凝土渗透性试验方法进行了专门研究,有些已经成为混凝土渗透性检验的标准方法。这些方法大致可归纳为如下几类:透水法、透气法、表面吸水法、Cl-渗透法、通电测量法等。其中透水法、透气法及表面吸水法只能用于低抗渗性混凝土,而对于抗渗性很高的高性能混凝土则无能为力;Cl-渗透法及通电测量法则可以用来测试高抗渗混凝土,国内外许多学者已用这些方法对高性能混凝土渗透性评价作了一些尝试性研究。
  M.R.Hansen等采用直流电量法(即AASHTOT277法)并同时测量混凝土交流阻抗的方法研究了高性能混凝土渗透性。
  章春梅等采用电导法测定了高性能混凝土的抗渗性。
  R.Gagne等采用透气性试验方法和ASTMC1202法,对掺与不掺硅灰的不同流动性的高强混凝土渗透性进行了研究。
  M.H.Zhang等采用高压透水方法和AASHTOT277法对高强轻质混凝土的渗透性进行了研究。
  文献介绍了一种可用于高抗渗性混凝土渗透性测试的试验方法。该方法采用有机溶剂作为渗透液(如卤代链烃族的二氯甲烷或链烃族的n-庚烷,其中采用二氯甲烷效果较好),试件养护至规定龄期后,将其浸泡于有机溶剂中,72h后测定试件单位面积渗透有机溶剂的体积数(l/m2),以此确定混凝土的渗透性。  赵铁军在其博士论文中研究了用于高性能混凝土渗透性评定的试验方法。该方法系对ASTMC1202方法进行一系列改进,克服了ASTMC1202方法中采用直流电测量的许多缺点。该方法采用电压为1V、频率为1KHz的交流电,被测混凝土试件两端都为3%的NaCl溶液,测量时间较短。将该方法与ASTMC1202方法比较,发现二者测试结果有很好的相关性。该方法最终是以经修正的混凝土电阻R反映混凝土的渗透性,并参照ASTMC1202对混凝土渗透性评定标准,用该方法将混凝土渗透性分为5级,见表1。
  表1 用交流电测量混凝土渗透性的评定标准
  参照ACI高性能混凝土委员会用ASTMC1202和AASHTOT277将高性能混凝土渗透性分级的评定标准,赵铁军用交流电测量法也提出了对高性能混凝土渗透性的评定标准,见表2。即认为若用交流电测量混凝土渗透性,当修正后的混凝土电阻大于450Ω时,就渗透性方面讲该混凝土可称为高性能混凝土,修正后混凝土的电阻值越大则高性能混凝土渗透性越低,相应抗渗性等级越高。
  表2 用交流电测量高性能混凝土渗透性的评定标准
  混凝土抗冻融性试验方法普通混凝土抗冻性试验分为慢冻法和快冻法两种,均是在水中进行。这两种方法是目前国际上同时存在的两种检测混凝土抗冻性的方法。美、日、加拿大等国采用快冻法,俄罗斯及东欧国家仍采用慢冻法,这两种方法均列入了这些国家的正式标准或规程。我国在五六十年代均采用慢冻法,六十年代中后期水工、港工部门相继开展了快冻法的试验研究,港工部门直接采用了快冻法,并列入了部颁混凝土试验规程(JTJ225-87);水工部门在1982年部颁的水工混凝土试验规程正式列入了快冻法。目前我国同时存在快冻法和慢冻法两种试验方法,并均以标准规程的形式存在。
  对于高强混凝土或高性能混凝土,其抗冻性能方面的研究报道尚不多见。已有的报道也多是采用水中快冻法进行抗冻性试验,如中国水利水电科学研究院曹建国等人对高强混凝土抗冻性进行的研究。
  有关高性能混凝土耐久性其他方面的研究除抗渗性、抗冻性研究之外,国内外学者对高性能混凝土的其他耐久性也作了一定研究。如中国建材研究院李建勇等对高性能混凝土徐变和干缩进行了研究;U.Schneider等对高性能混凝土抗化学侵蚀性进行了研究;奥地利P.Nischer等对高性能混凝土抗溶蚀性进行了研究;德国H.W.Dorner研究了高性能混凝土的耐酸性能;P.K.Mehta对高性能混凝土中碱-骨料反应及钢筋锈蚀进行了探讨。
  各国学者研究高性能混凝土耐久性的同时,对高性能混凝土耐久性有关机理进行了一定探讨,如P.K.Mehta研究了高性能混凝土中裂缝、微裂缝与其耐久性的关系;芬兰H.Kukko研究了高性能混凝土抗冻性与显微结构的关系。
  图1 混凝土受外界环境作用而劣化的整体模型
  综上所述可见,各国学者对高性能混凝土耐久性进行了不同程度的关注。然而至今为止,在大多数已发表的研究成果中,各种耐久性破坏因素都是单独考虑的。而事实上,混凝土尤其是高性能混凝土所处的使用环境是多种破坏因素共存的复杂环境,高性能混凝土不可能只受单一因素作用。几种因素共存所产生的综合作用,是各因素作用的简单叠加呢,还是产生超叠加效应(即“1+1>2”的效应)呢?1991年吴中伟院士提出了“混凝土耐久性综合症及其防治”的思想;PKMehta也明确指出,混凝土耐久性是一个整体性能,必须看成是所有劣化机制共同作用造成的结果,并提出了高性能混凝土受外界环境作用而劣化的整体模型(见图1)。这些都提醒人们应该重视多重因素对高性能混凝土耐久性破坏的研究。
  四、黑龙江省高性能混凝土发展与现状
  高性能混凝土的问世对本省建筑业的科技进步起到不小的推动作用,尤其是大流动度高性能商品砼的出现,大大提高了现代化施工水平,保证了施工质量和工程质量,为高层建筑的发展提供了有利的条件。尤其在冬季施工技术、防冻剂开发与生产、负温混凝土泵送施工、负温防渗混凝土研制与施工、超负温混凝土冬季施工、高层建筑物冬季施工技术、负温混凝土基础性学术研究水平都具有国内领先国际先进水平。
  商品混凝土也取得快速发展,目前全省商品混凝土设计产量达260~270万m3,实际生产量为100万m3左右。哈市占80万m3。商品混凝土种类比较齐全,有夏季用的缓凝商品混凝土;冬季施工用的负温混凝土、早强混凝土及抗渗商品混凝土等。混凝土强度等级一般常用的C20~C40,最高为C60混凝土在建筑工程中广泛应用。
  全省已建的商品混凝土搅拌站23家,予建的3~4家。齐市、大庆、牡市各2家,佳市、鹤市、黑河各1家。哈市14家的商品混凝土目前全省建设行业较为认同。但生产厂家过多,竞争激烈、价格偏低、商品混凝土的质量不易得到保证。
  省内砼管桩生产也得到快速发展,管子质量普遍得到保证、管理比较正规,管桩混凝土强度等级可达C80,用户比较满意。
  我省高性能混凝土进一步发展应加强经下几个方面的工作:
  1.调整省、市混凝土行业协会。目前行业正处于新老交替时期,处于政府不管,协会也没有人抓,应尽早整顿。制订新的协会规章制度,政府部门加强领导。建议省市混凝土协会与商品砼合并为一个协会。
  2.制定用于高性能混凝土的原材料地方标准与规程:
  ①砂、石原料要定点生产实现商品化,制订完善的质量标准及使用规程。
  ②制订矿物掺合料质量标准并选用优质的掺合料。
  ③整顿省内外加剂市场及生产厂家不具备生产条件的、低劣的外加剂从省市建筑市场清除。
  ④为了保证混凝土工程质量,水泥应控制C3A及碱的含量,是防止混凝土早期开裂的重要措施之一。
  ⑤研制和应用第三代的减水剂和防冻剂,开发新的引气剂也是提高高性能混凝土工程质量及耐久性的重要措施之一。
  3.提高人们对混凝土工程耐久性的认识。工程质量、施工质量及工程设计首先应以耐久性指标为依据,其次满足强度指标要求。耐久性工程是为国为民造福的工程节省社会资源的重大措施。
  4.加强高性能混凝土及耐久性混凝土的基础性科学研究,省市领导给予重视。

    ——本信息真实性未经中国混凝土网证实,仅供您参考